The Building Code and the Regulatory Environment

by

Technical Advisor, Structural Design
National Model Codes

- National Building Code
- National Fire Code
- National Plumbing Code
- National Farm Building Code
National Model Codes Organization

- CCBFC
 - National Building Code
 - National Fire Code
 - National Farm Building Code
 - National Plumbing Code

- Standing Committees
 - Matrix Composition
 - Regulatory
 - Industry
 - General Interest
 - Regular Meetings
 - Consensus Based
 - Specialty Task Groups
National Model Codes and the Change Process

- Change is ongoing
 - Typically 5 year cycle
- From Various Sources
 - Public
 - Government
 - Academia
 - Standing Committees
 - Recent Performance
 - …
National Model Codes and the Change Process

- Proposed Change Form
 - info re
 - problem
 - proposed change
 - rationale
 - cost implications
 - enforcement implications

- To Standing Committees as
 - normal change
 - special change

- For NBC, NPC, NFBC ˄ Not Retroactive
National Model Codes and the Change Process

- Normal Change
 - Standing Committee Approves
 - Public Review
 - To PTCBS
 - To CCBFC
 - Implementation at Next Code Cycle
National Model Codes and the Change Process

- Special Change
 - Standing Committee Approves
 - To PTCBS
 - To CCBFC
 - Immediate Implementation as Revision
 - Public Review
Objective-Based Code 2003
- Performance Requirements
- Prescriptive Requirements

Will Promote Innovation

Two Parts
- Division A - Objectives and Requirements
- Alternatives to Division B - Acceptable Solutions (i.e. current Code)
Building Codes and the Regulatory Framework

- Construction 🆓 Regulated
- Legal Authority 🆓 Provinces
 - Adopt or Adapt
Building Codes and the Regulatory Framework

- Adopt
 - Nova Scotia - minor changes
 - New Brunswick - minor changes
 - Manitoba - minor changes
 - Saskatchewan
 - Yukon
 - NWT
 - Nunavut
Building Codes and the Regulatory Framework

- Adapt
 - Ontario
 - British Columbia
 - Alberta

- In Use by Major Cities
 - Newfoundland
 - PEI

- Not Yet
 - Quebec

- Special
 - Vancouver
 - Montreal - Adopt
Building Codes and the Regulatory Framework

- Enforcement ▲ Municipalities
 - Authority Having Jurisdiction
 - Building Officials
 - Plans Examiners
 - Inspectors
Building Codes and the Regulatory Framework

Three Levels of Government

- Federal
 - National Model Codes

- Provincial
 - Legal Authority

- Municipal
 - Enforcement Plan Review and Inspection
 - Expertise
 - Downsized
 - Liability
 - Inconsistent
Environmental Loads and Building Codes

- Probability Based
- Initial Cost vs Acceptable Probability of Exceedance
Environmental Loads and Building Codes

- Primary Focus on Life Safety
- Snow
 - 1/30 year return on ground snow load
 - 20% uncertainty in ground snow
 - Factors applied
 - Environment Canada
Environmental Loads and Building Codes

- **Wind**
 - 1/30 year return \(\wedge\) main elements
 - 1/10 year return \(\wedge\) secondary elements
 - 1/100 year return \(\wedge\) post-disaster
 - Factors applied
 - Environment Canada

- **Tornadoes**
 - Probability \(< 10^{-5}\)
Environmental Loads and Building Codes

- Earthquake
 - 10% in 50 years (about 1/500)
 - I of 1.0 for regular buildings
 - Structural and non-structural components
 - Geological Survey of Canada
Buildings Requiring Enhanced Loads

- Post-Disaster Buildings
 - Provides services in a disaster
 - Hospitals, fire stations, police stations, radio stations, telephone exchanges, power stations, electrical substations, pumping stations, fuel depots

- Earthquake
 - Post-disaster \wedge factor of 1.5 plus drift limits
 - Schools \wedge factor of 1.3
Buildings Requiring Enhanced Loads

- Wind (main structural elements)
 - 1/30 year for all except,
 - 1/100 year for post-disaster

- Snow
 - No special considerations

- Ice
 - Not specifically regulated in NBC
Part 9 Residences

- Previous for Part 3, 4, 5, 6 Buildings
- Part 9 ▲ Prescriptive
- Masonry Reinforcement and Seismic Zone
- Anchorage of Water Heaters and Seismic Zone
- Snow Loads
- Tornadoes ▲ Roof Anchorage
 ▲ Foundation Anchorage
Next Cycle
Environmental Loads

- Harmonization of Approach
 - I vs return periods
- Address Post-Disaster for Earthquake, Snow, Wind
- Address Schools for Earthquake, Snow, Wind directly resulted from ice storm
Sources of Building Related Problems

- Design Stage
 - Codes/Standards
 - Design

- Fabrication Stage

- Construction Stage

- Changing Conditions

- Maintenance

...
IRC: Canada’s Construction Technology Centre

- **Mission**
 - Develops core competencies, knowledge base critical to construction needs
 - Supports development, commercialization, implementation of leading technologies
 - Fosters safe, sustainable built environment through development of codes and standards
IRC Program Areas

- Building Envelope and Structure
- Indoor Environment
- Fire-Risk Management
- Urban Infrastructure Rehabilitation
- Codes and Evaluations
Building Envelope and Structure

- **Objective**
 - Develop technologies for the design, construction and operation of durable, energy-efficient and cost-effective building envelope systems and structures.

- **Sub-Programs**
 - Wall and Window Systems
 - Roofing Systems
 - Thermal and Moisture Performance of Systems
 - Durability and Repair of Concrete Structures
Indoor Environment

- **Objective**
 - Develop cost-effective technologies for the design and operation of indoor environments that maximize the comfort, productivity, health and safety of building occupants.

- **Sub-Programs**
 - Lighting and Human Factors
 - Ventilation and Indoor Air Quality
 - Acoustics
Fire-Risk Management

Objective

• Develop technologies to enhance fire protection in buildings, save lives, and reduce the risks and cost of fire.

Sub-Programs

• Active Fire Protection
• Fire-Resistant Construction
• Residential and Commercial Buildings
• Industrial Buildings
Urban Infrastructure Rehabilitation

Objective

- Develop technologies to enhance the performance and durability of road systems and buried services and to enhance the management of these assets.

Sub-Programs

- Urban Roads
- Buried Utilities
- Concrete Structures
Code Development

Objective

- To develop Canada's national construction codes to assure uniformity and efficiency in construction, and to address public health and safety.
- Further the adoption of national codes
- Lead the construction industry toward a system of objective-based codes
- Publish practice guides facilitating the interpretation and application of the codes
Evaluation of Construction Products

Objective

• To provide a national evaluation service that facilitates market acceptance of innovative products and systems nationally and internationally.